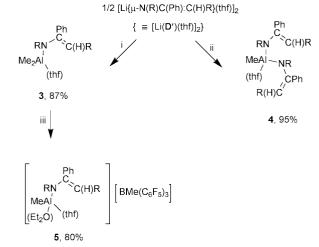
Laurence Bourget, Peter B. Hitchcock and Michael F. Lappert*

The Chemistry Laboratory, University of Sussex, Brighton UK BN1 9QJ. E-mail: m.f.lappert@sussex.ac.uk

Received 24th May 1999, Accepted 30th June 1999


The 1-azaallylaluminium compounds [Al{N(R)C(Bu')C-(H)R}{N(R)C(Bu')=C(H)R}Me] (X-ray characterised), Al{N(R)C(Bu')C(H)R}Me_2, Al{N(R)C(Ph)=C(H)R}Me_2 3 and Al{N(R)C(Ph)=C(H)R}_2Me(thf) were obtained from the appropriate methylaluminium chloride and 1-azaallyllithium; 3 with $B(C_6F_5)_3$ gave [Al{N(R)C(Ph)=C(H)R}-Me(thf)(OEt_2)][BMe(C_6F_5)_3] (R = SiMe_3).

There is much current interest in bi- and tri-dentate nitrogencentred spectator ligands, which often are a component of electrophilic neutral or cationic metal alkyls. Aluminium complexes have become prominent, following the disclosure of Coles and Jordan that certain cationic amidinatoaluminium methyls, such as $[Al(LL)Me][B(C_6F_5)_4]$ (LL = A), are active catalysts for the polymerisation of ethylene.² We recently described the synthesis and X-ray molecular structures of a series of neutral and cationic β-diketiminatoaluminium methyls [Al(LL)Me₂], $[Al(LL)Me(thf)][BMe(C_6F_5)_3]\cdot 0.5$ thf and $[Al(LL)Me(OEt_7)]$ - $[B(C_6F_5)_4] \cdot 0.5$ Et₂O (LL = **B**, R = SiMe₃), the latter two being the first crystallographically characterised cationic aluminium methyls.¹ The salt $[Al\{N(Ar)C(Me)C(H)C(Me)N(Ar)\}Bu^t]$ - $[B(C_6F_5)_4]$ has been mentioned $(Ar = C_6H_3Pr^i_2-2.6)$. Molecular orbital calculations on Al^+-L complexes ($L = C_6H_6$, C_4H_4O , C_5H_6 or C_4H_4NH) have been carried out.⁴ We now report on aluminium methyls containing the 1-azaallyl ligands C⁵ and D⁶ (or their tautomers C' and D'), which are skeletally isoelectronic with amidinates such as A.

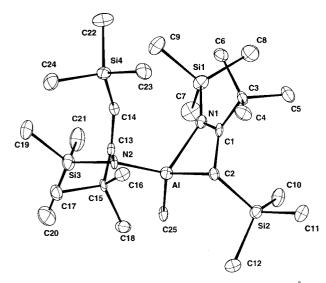
Treatment of the appropriate methylaluminium chloride with $[\operatorname{Li}(C)]_2^5$ or $[\operatorname{Li}(D')(\operatorname{thf})]_2^6$ in the correct stoichiometry in hexane at low temperature afforded in high yield the 1-azaallylaluminium methyls $1\ddagger$ and 2 (Scheme 1) or 3 and $4\ddagger$ (i and ii in Scheme 2). From 3 and tris(pentafluorophenyl)borane, under the same conditions, the salt 5 was obtained (iii in Scheme 2), containing a 1-azaallyl(methyl)aluminium cation.

The pale yellow, crystalline complex 1 gave a satisfactory EI (70 eV) mass spectrum; the highest m/z peak corresponded to M^+ (4%), followed by $[M - \text{Me}]^+$ (44%). The multinuclear NMR spectra in toluene-d₈ showed (Table 1) that (i) the solution structure corresponded to that in the crystal (Fig. 1); (ii) the two 1-azaallyl ligands were tautomers [Al(C)(C')Me]; (iii)

Scheme 1 Synthesis of the 1-azaallylaluminium methyls [Al(C)-(C')Me] **1** and Al(C)Me₂ **2**. Reagents and conditions: i 1/2 (AlMeCl₂)₂, C_6H_{14} , -78 °C; ii (AlMe₂Cl)₂, C_6H_{14} , -78 °C.

 $\begin{array}{llll} \textbf{Scheme 2} & \textbf{Synthesis} & \textbf{of the 1-azaallylaluminium methyls } & \textbf{Al}(\textbf{D}') \\ \textbf{Me}_2(\textbf{thf}) & \textbf{3}, & \textbf{Al}(\textbf{D}')_2\textbf{Me}(\textbf{thf}) & \textbf{4} & \textbf{and } [\textbf{Al}(\textbf{D}')\textbf{Me}(\textbf{thf})(\textbf{OEt}_2)][\textbf{BMe}(\textbf{C}_6\textbf{F}_5)_3] & \textbf{5}. & \textbf{Reagents and conditions:} & \textbf{i} & \textbf{1/2} & (\textbf{AlMe}_2\textbf{Cl})_2, & \textbf{C}_6\textbf{H}_{14}, & -78 \text{ }^\circ\textbf{C}; & \textbf{ii} \\ \textbf{1/2} & (\textbf{AlMeCl}_2)_2, & \textbf{C}_6\textbf{H}_{14}, & -78 \text{ }^\circ\textbf{C}; & \textbf{iii} & \textbf{B}(\textbf{C}_6\textbf{F}_5)_3, & \textbf{C}_6\textbf{H}_{14}, & -78 \text{ }^\circ\textbf{C}, & \textbf{then Et}_2\textbf{O}. \\ \end{array}$

the ligands C and C' exchanged rapidly on the NMR time scale, eqn. (1); and (iv) the $^1\mathrm{H}$ NMR spectral coalescence temperature at $T_\mathrm{c}=302$ K [based on the C(C H_3) signal at $\delta=0.99$ at 302 K], corresponding to $\Delta G^\ddagger_{302\,\mathrm{K}}=60.7$ kJ mol $^{-1}$.


The molecular structure of the crystalline complex 1 is illustrated in Fig. 1.§ The aluminium atom is almost trigonally disposed with respect to the atoms C(25), C(2) and N(2) (the sum of the angles subtended by these atoms at $Al = 349.3^{\circ}$), the bond to N(1) completing the trigonal monopyramidal geometry about the four-coordinate metal atom. The two 1-azaallyl ligands differ in that one is of type C and the other C'. Thus, (i) the Al-N(1) bond of 1.998(2) Å is only slightly longer than the average Al-N bond length of 1.928(3) Å in the three-coordinate aluminium β -diketiminate Al-N(1) Al-

 $[\]begin{array}{c|c} & \text{Bu}^{t} \\ & \text{C} \\ & \text{RN} - \text{CBu}^{t} \\ & \text{MeAl} & \text{I} \\ & \text{NR} & \text{I} \\ & \text{NR} & \text{I} \\ & \text{R(H)C = CBu}^{t} & \text{I} \\ & \text{E[Li(C)]}_{2} \\ \end{array}$

Table 1 Selected NMR spectroscopic chemical shifts (δ) and assignments

Me₃SiNC_a(Bu^t or Ph)C_b(H)Si_cMe₃

Compound (Ligand)		Assignment				T (V)
		C_a	C_b	Н	²⁹ Si _c	T(K)/ solvent
1	[(Enamide) [(η³-1-Azaallyl)	174.0	116.4	4.78	-15.1	203/C ₇ D ₈
2	(1-Azaallyl)	221.0 216.1	45.2 49.6	2.09 2.47	$-1.6 \\ -1.0$	333/C ₆ D ₆
3 4	(Enamide) (Enamide)	165.8 165.5	111.3 114.4	5.08 5.07	-11.7 -11.6°	298/C ₆ D ₆ 333/C ₆ D ₆
5	(Enamide)	160.3	116.2	5.04	-10.3	$298/C_6D_6$
a A	At 298 K.					

Fig. 1 Molecular structure of **1** with selected bond distances (Å) and angles (°): Al–N(1) 1.998(2), Al····C(1) 2.380(2), Al–C(2) 2.022(2), Al–C(25) 1.990(2), Al–N(2) 1.839(2), C(1)–C(2) 1.468(3), N(1)–C(1) 1.320(3), N(2)–C(13) 1.445(3), C(13)–C(14) 1.347(3) Å; N(1)–Al–C(2) 70.1(1), C(2)–Al–C(25) 122.1(1), C(25)–Al–N(2) 111.1(1), N(2)–Al–N(1) 112.5(1), N(1)–Al–C(25) 119.1(1), N(2)–Al–C(2) 116.1(1)°.

Me₂] **6**,¹ whereas the Al–N(2) bond of 1.839(2) Å is appreciably shorter; (ii) the Al–C(2) bond of 2.022(2) Å is only marginally shorter than the Al–C(25) bond of 1.990(2) Å, or the average Al–C bond length of 1.964(3) Å in **6**,¹ and is much shorter than the Al···C(13) distance of 2.816(2) Å; and (iii) the C(1)–C(2) bond of 1.468(3) Å is significantly longer than the C(13)–C(14) of 1.347(3) Å. The presence in a single crystalline molecule of two tautomeric 1-azaallyl ligands such as C and C' has previously been observed in [Sn{N(R)C(Ph)C(H)CR₂}{N(R)C(Ph)=CR₂}] 7, in which the Sn–N and C(Ph)-CR₂ bond lengths were 2.288(4) and 2.153(4) and 1.461(6) and 1.365(3) Å, respectively.⁷ Moreover, the two ligands of 7 underwent rapid intramolecular exchange in toluene-d₈ down to -90 °C.

The assignment of structures for the complexes 2–5 rests at present on their multinuclear NMR spectra, as indicated for the 1-azaallyl ligands C, C', D and D' in Table 1. The presence of an equivalent of thf in each of the complexes 3–5 and also of Et_2O in 5 is consistent with their 1H NMR spectra. The ionic character of the salt 5 is borne out by the ${}^{11}B\{{}^1H\}$ NMR spectrum, $\delta = -14.6$ ($w_{1/2} = 90$ Hz), cf., $\delta = -16.7$ for $[Al\{N(R)C(Ph)C(H)C(Ph)N(R)\}Me(thf)][BMe(<math>C_6F_5)_3]$. The

²⁷Al{¹H} NMR spectral signals for each of the complexes 1–5 was broad but distinct: δ 125 (1, 1.2), 141 (2, 2.4), 155 (3, 2.4), 128 (4, 3.8) and 167 (5, 4.0) (the second number in each bracket refers to $w_{1/2}$ in kHz). The difference in structures between the monomethylaluminium bis(azaallyls) 1 (C, C') and 4 (D'₂), is attributed to the β-carbon substituent (Bu^t or Ph) rather than the influence for 4 of thf, since structure 1 was also found when 1 was prepared in thf. The bis(enamido)aluminium structure for 4 may have been preferred because of the conjugative effect.

Compounds related to the 1-azaallyls of aluminium, the 2-pyridylmethyls $[Al\{C(R)_2(C_5H_4N-2)\}_2][AlCl_4]$ and $[Al\{C(R)_2(C_5H_3Me-6)-2)\}_nCl_{3-n}]$ (n=1 or 2) are known.⁸ The present results, together with those by Roesky and co-workers on the recently prepared neutral aluminium compounds containing the ligand $[C(R)_2C(Ph)NR]^{-}$, demonstrate the versatility of 1-azaallyl ligands in aluminium chemistry, which is now being explored more extensively.

We thank the European Commission for the award of a Marie Curie fellowship for L. B.

Notes and references

‡ Synthesis of 1 and 4. Methylaluminium dichloride (1.7 cm³ of a 1 mol dm⁻³ solution in hexanes, 1.7 mmol) was added dropwise to a solution of [Li(C)]₂ (0.86 g, 1.72 mmol) in hexane (60 cm³) at -78 °C. The mixture was stirred for 12 h at ambient temperature, then filtered. Upon concentration and cooling at 4 °C, pale yellow crystals of 1 (0.87 g, 97%), mp 95–98 °C were obtained (Found: C, 56.6; H, 10.9; N, 5.40. C₂₈H₅₉AlN₂Si₄ requires C, 57.0; H, 11.2; N, 5.31%). In a similar fashion from AlMeCl₂ (2.4 cm³ of a 1 mol dm⁻³ solution in hexanes, 2.4 mmol) and [Li(D')(thf)]₂ (1.64 g, 2.4 mmol), there was obtained the pale orange solid 4 (1.4 g, 95%), mp 80–85 °C (Found: C, 59.4; H, 9.20; N, 4.46. C₃₃H₅₉AlN₂Si₄ requires C, 62.0; H, 9.25; N, 4.39%).

§ Crystallographic data for 1: $C_{25}H_{59}AlN_2Si_4$, M=527.19, monoclinic, space group $P2_1/n$, a=11.360(4), b=20.099(5), c=15.366(8) Å, $\beta=101.96(4)^\circ$, U=3432(2) ų, Z=4, $\lambda(Mo-K\alpha)=0.71073$ Å, $\mu=0.21$ mm⁻¹. Data were collected at 173(2) K on an Enraf Nonius CAD4 diffractometer in the $\omega-2\theta$ mode for the range of $2<\theta<25^\circ$. The structure was solved by direct methods (SHELXS-97) and refined with full-matrix, least-squares on all F^2 (SHELXL-97). All non-hydrogen atoms were anisotropic, and hydrogen atoms were included in the riding mode with $U_{\rm iso}(H)=1.2~U_{\rm eq}(C)$ or 1.5 $U_{\rm eq}$ for Me groups. Final residual for 6033 independent reflections was $R_1=0.066$, $wR_2=0.110$ and for the 4592 with $I>2\sigma(I)$, $R_1=0.043$, $wR_2=0.098$. CCDC reference number 186/1547. See http://www.rsc.org/suppdata/dt/1999/2645/ for crystallographic files in .cif format.

- 1 F. Coslédan, P. B. Hitchcock and M. F. Lappert, *Chem. Commun.*, 1999, 705
- 2 M. P. Coles and R. F. Jordan, J. Am. Chem. Soc., 1997, 119, 8125.
- 3 C. E. Radzewich, M. P. Coles and R. F. Jordan, *J. Am. Chem. Soc.*, 1998, **120**, 9384.
- 4 D. Stöckigt, J. Am. Chem. Soc., 1999, 18, 1050.
- 5 P. B. Hitchcock, M. F. Lappert and D.-S. Liu, J. Chem. Soc., Chem. Commun., 1994, 2637.
- 6 R. Sablong, unpublished work; for the tmen complex, see P. B. Hitchcock, M. F. Lappert and M. Layh, *Chem. Commun.*, 1998, 201.
- 7 J. Hu, P. B. Hitchcock, M. F. Lappert, M. Layh and J. R. Severn, *Chem. Commun.*, 1997, 1189.
- 8 T. R. van den Ancker and C. L. Raston, *J. Organomet. Chem.*, 1995, **500**, 289.
- 9 C. Cui, H. W. Roesky, M. Noltemeyer, M. F. Lappert, H.-G. Schmidt and H. Hao, *Organometallics*, 1999, **18**, 2256.
- 10 G. M. Sheldrick, SHELXS-97 and SHELXL-97, Programs for crystal structure solution and refinement, University of Göttingen, 1907

Communication 9/04138I